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Configuration Optimization of Mobile Manipulators
with Equality Constraints using Evolutionary Programming

Brian Andersen
John McDonnell

Ward Page

Naval Command, Control and Ocean Surveillance Center RDT&E Division

Abstract lated annealing used by Carriker et al
[4], and EP, an evolutionary search

A mobile manipulator generally possesses strategy, used by McDonnell et al [5].
kinematic redundancy, which requires some The EP technique was found to be an
method for selecting the configuration appro- effective search technique that avoided
piate to the task. Evolutionary Programming local optima.
(EP) has been used successfully to select an
appropriate configuration using a large penalty The cost function for optimization used
on the end-point position to force the end-point in [5] imposed a high cost on deviations
to the goal position for the task. This paper of the enc -point position from the goal
demonstrates that using an equality contstraint position to force the end-point to be at
for the end-point position results in much the required position for the task. Un-
faster convergence to Approximately the same fortunately, this high cost relative to the
final configuration. The reasons for this in- remaining elements of the cost function
crease in speed are examined using a simplified results in a search surface that is difficult
model to determine the relative size of their for the EP algorithm to traverse effi-
effects. ciently. This paper proposes constrain-

ing the end-point position to the goal
Introduction position and searching the remaining

smaller-dimensional space. In addition,
The use of mobile manipulators is becoming this paper examines the effect of the
more prevalent on the factory floor, undersea, ratio of weights for different elements of
and in space applications. Most of these sys- the cost function on the efficiency of the
tems are teleoperated or telepresence systems EP search algorithm.
[1], relying upon the operator to eliminate any
kinematic redundancies through direct isomor- Optimization Criteria
phic mappings. To make these systems more
autonomous, the kinematic redundancies must The ultimate configuration of the manip-
be resolved without requiring operator interven- ulator is a direct function of the choice
tion. of the optimization criteria. This criteria

must take into account the end-point
Various methods have been proposed to search position, obstacles in the environment,
for the best configuration of a mobile manipula- static torques required at the joints due
tor for a given task. These methods include to external forces and the weights of the
gradient descent searches of the joint-space of links, and the ability of the manipulator
the manipulator used by Pin and Culioli [2], to perform tasks in a particular config-
and proposed by Burdick and Seraji [3], simii- uration, known as the manipulability.



This section summarizes the criteria developed J = Jacobian of the manipulator
in [21 and [5] to determine the cost associated F = Force applied to manipulator
with mobile manipulator configurations. Therefore, the static joint torques re-

quired are given by
The end-point position of the manipulator is
the most important factor in the cost of a N I 1F 1 + Tf,

configuration since the manipulator will be
unable to perform the task if it is not at the
goal position. The cost associated with the end- where
point position is Mi = Jacobian associated with the

center of mass of the i"' link
Cga=IXd-XfFi = Force of the weight of the it"

link
where .j = Jacobian associated with the

Xd = Desired Cartesian tip position location of the J'h point load
Xe = Actual Cartesian tip position j" point load

N = Number of links
It is essential that the manipulator avoid any n = Number of point loads
obstacles that may be present in its workspace. The cost associated with the static
To do this, points of avoidance are specified torques at the joints is given by
along the links of the manipulator. The cost
associated with obstacle avoidance is ctorq- E N

N tmax" oC ob .z 0E M= X _ "°b-- 0  oxato,,1112 where

-Ti = Torque on i" joint
where x, = Maximum torque on i' jo int

X~a= Cartesian position of the i"h point of
avoidance The final element of the cost function is

X.i = (Cartesian Position of the jth obstacle the manipulability, which is designed to
I = Number of points of avoidance avoid configurations near joint-space
m = Number of obstacles singularities where the manipulator is

difficult to control, The cost associated
The static joint torques required in a given with manipulability is given by
configuration are a function of the external 1
forces applied and the weights of each link. C,,, 1
Any force on the manipulator can be mapped
to the static joint torques required for equilibri-
um using the Jacobian of the manipulator at the
point where the force is app!ied. This mapping The complete cost function can be for-
is given by mulated as a weighted sum of the ele-

ments of the individual cost functions.
x,=J'(O) F This is given by

where
'En = Joint torque vector



Cost= (X Cgoaa + f3 C~by C,+CCCorq7 7. Continue with Step 2.

The Mobile Manipulator
As Pin [2] has pointed out, this cost function
can be trapped in local minima when using a TFhe mobile manipulator used in these
gradient descent algorithm. Therefore, the EP simulations is shown in Figure 1. It con-
algorithm is an attractive alternative. sists of a platform that is free to move in

one dimension with a three-link planar
The EP Algorithm manipulator mounted on it. The link

lengths are 1.0, 1.0, and 0.5 units, respec-
The evolutionary programming algorithm per- tively. Each link has a density of 10
forms a search by methods analogous to those units per unit length, and the center of
found in natural evolution. The algorithm gravity is at the midpoint of each link.
involves generating an initial population, mutat- The height of the first joint of the ma-
ing this population, determining the fitness of nipulator is 0.5 units. An external force
each element of the population, competing ele- of 0.5 units is applied acting downward
ments of the population against each other, and at the tip of the manipulator.
selecting the most fit elements of the popula-
tion to survive to serve as the parent vectors for The size of the mutation for each ele-
the next generation. nient of the population is a function of

the generation number. This allows the
EP can be described by the following seven-step search to cover a large range of possible
procedure, similar to the one found in Fogel configurations and still to refine the
[6]. configuration vectors as the search pro-

gresses. The size of the mutations is
1. Generate an initial population of N given by

configuration vectors. -0, oo1,k

2. Mutate each of the N parent configura-
tion vectors to create a population of size where
2N. 6 = Size of the mutation

p = N(0,1) random variable
3. Determine the cost of each of the 2N T = U(0,1) random variable

configuration vectors. k = Generation number

4. Compete each member of the population The goal position for the search was
against the same number of randomly- located at the Cartesian coordinates
chosen opponents, assigning a win to the (5,1.5), as designated in Figure I by the
one with the lowest score. filled rectangle. One obstacle was

placed at the Cartesian coordinates
5. Sort the population by decreasing num- (5,1.0), as designated in Figure 1 by the

ber of wins. circle. One point of avoidance was
chosen at the midpoint of the second

6. Remove the N configurations with the link, as designated in Figure 1 by the
lowest number of wins. cross. The weights in the cost function

were chosen to be 100 on Cgoa,, 10 on



Cobs, I o n C t .. a n d I olo C in ( a =~ 100, -.310, y = 1, and e = 1).

Two different approaches were compared. Tihe
first approach used a configuration vector
consisting of the cart position and the angle of
each of the links relative to the horizontal,
given by _ _ _

pi= x, 01,O ,0ý ] Figure 1: Converged Solution
when Weighting Tip Position

This representation required four elements in
each configuration vector and relied on a large -........
weight on Cgo, to force the end-point to the •, ,, _i:.
goal position. :- ..

The second approach used a configuration
vector that consists of only the angles of the
outer two links of the manipulator, given by

Pi-• [0)2 03] .....
Figure 2: Converged Solution
when Constraining Tip Posi-

The cart position and inner joint angle v'ere tion
calculated so that the end-point was at the goal
position. Therefore, instead of requiring four
elements in the configuration vector, only two
were required.

two approaches can be seen in Figures 3
A complication of employing the second ap- and 4, which show the mean and bc.,t
proach is the cart position and first angle are costs for the two approaches, respec-
not uniquely determined by the outer two tively. The difference in the horizontal
angles, but can take on two distinct sets of scales -f' the two figures should be not-
values. The values used in a given configu- ed. The first approach took 4875 itera-
ration were chosen randomly with equal proba- tions to converge to the point where the
hility to allow the search to cover as large a value of the cost function of the best
portion of the space as possible. configuration was within 0.01 of its final

value. Ihe second approach, however,
The best configuration obtained after 5000 took only 15 iterations to reach that
iterations of the EP algorithm are shown in point. Clearly, searching for the optima
Figures 1 and 2 for the first and second ap- using an equality constraint instead )f
proaches, respectively. The second approach putting a large penalty on the c:id-pcint
results in a slightly better configuration than the position is by far tile better approach for
first, although the configurations are approxi- this problem.
inatcly the same.

Hlowever, a dramatic difference between the



ment of the cost function while the other
50 •elements have much smaller weights

results in a search space that is difficult
to traverse. The effects of these two
factors are examined in the next two sec-
tions, using a simplified model.

30
Large Weights in the Cost Function

20 -Placing a large weight on one element of
the cost function that represents a par-

10 ticularly important constraint on the
10 -system can result a in search space tha.

is difficult to traverse. In this section, a

0 . simplified model is presented to study
0 1000 3a000 403 the effect this has on convergence.

Number of Iterations
The cost function chosen to study this

Figure 3: Best and Mean Cost when effect was
Weighting Tip Position

CostA (x+y-10) 2+ (x-,) 2

The two terms of this cost function are
The faster convergence using the second ap- minimized along different lines in the
proach was not the result of starting with a space of x and y. The minima of this
better set of parent vectors (vectors which function occurs where x = 5 and y = 5.
resulted in the manipulator end-point being at There are no local minima in the search
the goal position). The same test was repeated space.
for the unconstrained search, except that the
initial population was the same as generated for The search space for this cost function is
the constrained search. The final configuration shown in Figure 7 for the case when
is shown in Figure 5, and the best and mean A= 100. With the large weight on the
cost for this search are shown in Figure 6. first term in the cost function, the search
Although the search converged to approximate- surface is a narrow, steep valley, where
ly the same final configuration as the other two the floor of the valley is nearly flat com-
searches, the cost is slightly higher. It took over pared to the steepness of the walls.
2200 iterations before this search found a better Once an evolutionary search has found
configuration vector than the best one from its its way to the floor of the valley, it
initial population. would have to mutate the solution in

precisely the correct direction to find a
There are two possible causes for this dramatic better solution than the one it has al-
improvement in convergence speed when the ready found.
end-point position is constrained. First, the
dimensionality of the search space has been
reduced by constraining the end-point position. To illustrate this, let a parent vector be
Second, the use of a large weight on one ele- x = 6 and y = 4, and let the mutation of



However, if the solution is assumed to

,5t i satisfy the equality constraint,i -- Best costthcosri,

-Mean Cost 1o x+y
40

II

the search surface is reduced to the
30 , curve shown in Fgure 8. This demon-

strates the simplification to the search
20 , surface that results from using the equal-

ity constraint.44

• II ~ 44 14

10 . , ,, , ,4 ,,' ', A To study the effect of the ratio of the
,, ,, ,i-,,, i. ., .- , '.,'' ,-, weights, the value of A was varied. For

"each value of A, ten evolutionary search-
0 Ia 10 2 es were conducted, each starting with a

different parent population. EachNumber of ItratiOols search was continued until the best solu-

Figure 4: Best and Mean Cost when tion was within a radius of 0.01 units of
Constraining Tip Position the actual minima of the function. Fig-

ure 9 shows the average of the number
the y component be +0.1. If the weight A on of iterations to achieve this level of
the first term of the cost function is 100, the convergence as a function of the value
mutated x component must fall between 5.97 of A. This indicates that the number of
and 5.79 to result in a better solution, a range iterations required for convergence
of mutations of 0.18. If, however, the weight A increases as the ratio of the weights (the
is 10000, the mutated x component must be be- steepness of the valley walls) increases.
tween 5.91 and 5.89 to result in a better solu- However, the number of iterations in-
tion, a range of only 0.02. This example indi- creases by only approximately a factor of
cates that as the ratio of the cost function seven as the weight ratio increases by
weights increases, the probability of a mutation seven orders of magnitude. For this
being better than its parent decreases once the system, the effect of the weight ratio
best parent vector has reached the valley floor, does not increase dramatically until very

large weight ratios are employed.

toe. OR ,., "02 The difficulties of searching in these nar-E row, steep valleys with relatively flat
floors might be overcome by augmenting
the evolutionary search with a local
search method. This approach has been
suggested by Waagen et al [7], using the
direction set algorithm as the local met-
hod.

Figure 5: Best Configuration when Number of Parameters in Search
Weighting Tip Position and a Start-
ing Population with Tip at Goal The other factor that increases the effi-
Position



To study the effect of the number of
,50 parameters, the simplified model was

modified. The cost function was modi-
40 fied to be a function of twelve variables,

x1 through x6 and y1 through Y6. The

cost function was specified by the three
30 equations

10

Cost=lOOO (x+y-1O) 2_ (x-y) 2+

0 1000 2000 3000 4000 i 6 6
Number of Iteratin

Figure 6: Best and Mean Cost when The minima of this cost function occurs
Weighting Tip Position and a Start-
ing Population with Tip at Goal when all the x, and yi are 5 / 6.
Position

First, the minima was found searching
ciency of the search when using an equality for all twelve variables. The search was
constraint is the reduction in the dimensionality repeated ten times, starting from differ-
of the search. Instead of searching for four pa- ent randomly-selected parent vectors,
rameters, the search is attempting to find the and the average number of iterations to
minima for two parameters. In this section, the converge to a solution within 0.01 units
effect of reducing the number of parameters is of the actual solution was determined.
examined. This process was repeated five additional

times, each time constraining an addi-
tional pair of x, and y1 to the values

.. where the function was minimized.
.I Figure 10 shows the average number of

-" . -iterations for convergence as a function

. .. , of the number of parameters which the
search attempted to find. This number

. •of iterations does not increase monoto-
..... nically with the number of parameters in

the search as was expected. While the
general trend is upward, it is not clear
why the number of iterations drop for
increasing number of parameters.

"It is interesting to note that the com-
bined effect of the reduction in dimen-

Figure 7: Search Space of Simpli- sionality and the simplification of the
fied Model



100 .... .. the problem of finding the best configu-

./1 ration for a mobile manipulator with
so K / redundant degrees of freedom. Thlie

search was conducted both by placing a

.. . large penalty on the deviations of the
,,end-point position from the goal position

' ... .and by fixing the end-point at the goal
, |position and only searching for two

20 ---- elements of tlhe configuration vector.1The search converged far faster when
0. the end-point of the manipulator was

0 2 4 6 a 8 0 constrained.
X Posfn

Figure 8: Search Surface with Equa- Tlhis increase in periorinance is OLIc to
lity Constraint two factors: the search surface is difficult

to traverse when one factor of the cost
search surface for this simplified model can function is weighted significantly more
only account for a reduction on the order of ten than the other; and the dimensionalitv of
times, whereas the increase in speed of conver- the search has been reduced. The re-
gence using the equality constraint for the suits of an analysis of a simplified model
mobile manipulator was on the order of one indicate that these factors increase the
hundred times. This discrepancy might be convergence speed by approximately one
explained by the greater complexity of the order of magnitude, but the combined
search surface for the mobile manipulator. effect does not seem to actually acconlt

for the total effect seen in the simulation
of the actual manipulator.

Conclusions
In a practical implementation of configu-

Evolutionary programming has been applied to ration optimization using EP, using thle
end-point constraint yields superior
performance. For a general system, the

7= dimensionality of the search can only be
8= reduced if there is some a priori kn'owl-

edge of the minima of the system. If
possible, one should incorporate the

4= constraints to speed convergence.
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